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Gravitational force in weakly correlated particle spatial distributions
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We study the statistics of the gravitatioridllewtonian force in a particular class of weakly correlated spatial
distributions of pointlike and unitary mass particles generated by the so-called Gauss-Poisson point processes.
In particular we extend to these distributions the analysis that Chandrasekhar introduced for purely Poisson
processes. In this way we can find the explicit asymptotic behavior of the probability density function of the
force for both large and small values of the field as a generalization of the Holtzmark statistics. In particular,
we show how the modifications at large fields depend on the density correlations introduced at small scales.
The validity of the introduced approximations is positively tested through a direct comparison with the analysis
of the statistics of the gravitational force in numerical simulations of Gauss-Poisson processes.
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[. INTRODUCTION tropic Poisson point process as obtained by Chandrasekhar in
Ref. [5]. For the GP class of point processes we generalize
The knowledge of the statistical properties of the gravitathese methods introducing appropriate approximations in or-
tional field in a given spatial distribution of point particles der to exploit, in this framework, as much as possible the
provides an important information about the system in manynformation encrypted in the two-point density-density cor-
cosmological and astrophysical applications in which the inTelation function. In this way an integral form for the condi-
teracting masses are treated as pointlike particles. In fadtonal probability density function of the gravitational force
such information acquires particular importance in contextds obtained, and explicit scaling laws for both large and small
such as the stellar dynamics and the cosmologicalody val_ues of _the force are given for any spatial dlstrlbqtl_on of
simulations for the study of the formation of structures fromPOINt particles belonging to the GP class. The validity of
initial mass density perturbations at least at the “granular"these theoretical results is confirmed by direct comparison
scale[1,2]. Similar studies are involved in other domains of With those obtained by the statistical analysis of numerical
physics, such as the statistical physics of thslocation- ~ Simulations of exact GP particle distributions.
dislocation interaction for what concerns the analysis of

crystal defects in condensed matter phy$iis Il. GRAVITATIONAL FORCE PROBABILITY DENSITY IN
Until now a complete study of this problem has been ac- A POISSON POINT PROCESS

complished only in the case of uncorrelated particle spatial . )

distributions obtained by Poisson point procedses]. Par- First, let us recall Chandrasekhal™ results for the Pois-

tial results have been found more recently in two other caseSOn €ase. A homogeneous and isotropic Poisson spatial dis-

(1) a fractal particle distributiof6], and(2) a radial density tribution of pomtpartlcl_es with average number densiin a

of particles[7]. In this paper we study the case of the so-VolUmeV can be obtained as follows.

called Gauss-PoissofGP) class of point processds,9] (1) Partition the space in cells of volunuy.

which generates particle spatial distributions characterized (2 ©ccupy randomly with a particle of unit mass each of

only by short-range two-point correlations, i.e., connected€se cells with probabilitpdV (with n>0 andndV<1) or

n-point correlation functions are integrable fo=2 and |€@ve it empty with complementary probability-hdV with

vanish forn=3. In this sense it can be seen as the first stef© Correlation between different cells.

of correlated systems beyond the completely uncorrelated From this definition it is simple to find that the average

Poisson point process, and is characterized spatially by thaumber of particles in a box of volume is simply (N)

presence of binary systems. For this last reason the introdu&”v’ and that fluctuations from realization to real!zatlon of

tion of such a class of point processes is useful to study théis number are of the order ghV (the so-called Poisson or

statistical physics of many spatial distributions of particlesWhite noise, which become negligibly small with respect to

characterized mainly by such binary structures. (N) in the largeV limit. In general, the internal spatial cor-
First of all we recall the main rigorous results about therelations of a stochastic spatial distribution of unit mass par-

probability density function of the gravitational force in a ficles are measured by the connected two-point correlation

particle system generated by a pure homogeneous and isfunction (CTPCH &(x) defined by
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R (n(i n(x +)2)> By using the Fourier representation of the Dirac delta func-
Ex)= %—1, tion and taking the infinite volume lim¥/ — +c0 with N/V
n =n fixed (fluctuations ofN from the average valupV can

. o be shown to give vanishing corrections in the infinite volume
wheren(x) ==;8(x—x;) is the microscopic number density limit), we obtain:
field in which the sum is extended to all the particles position
)Zi and(- - -) is the ensemble averager volume average in P(If)=
the infinite volume limit in case of ergodicity, as in all point (2m)°
processes treated her&ince in the definition of the Poisson
case there is no correlation between the probability of occuVnere
pations of different cells, it is simple to show that the CTPCF 4
has only the diagonal part due to granularity, i.e., Cp(k)= 1—5(27Tk)3/2. (6)

J dskenZ-ﬁ—ncp(k), (5)

E(x)=38(x)/n, (1)  Note thatA(k)=exd —nCp(K)] is the Fourier transform of

) L i ) P(If), i.e., A(k) is the so-calleccharacteristic functionof
meaning that each pa_rtlcle is spatially correlat_ed or!Iy wlththe stochastic forcé [4]. SinceCo(K) depends only ork
itself. Any other statistically homogeneous particle distribu-""". - - .
tion with a well defined average density=0 is character- = |Kl, P(F) will depend only onF=[F|=0. That is, the
ized by a CTPCF of the forrfiL0,11] direction (0, ¢) of F is completely random and statistically

the modulusF is distributed following the PDFW(F)

I 0 =47F2P(F) that can be rewritten as
§(x)=——+h(x), 2 N an
W(F)= —f dkksin(kF)exp( - E(27Tk)3’2>. @
where h()?) is the nondiagonal part due to correlations be- mJo
tween the positions of different particles. This important result is known under the nameHufitzmark
Fixing arbitrarily all the physical constants equal to one,PDF (for a general account of the Holtzmark PDF and other
the gravitational field acting on the origin of axis is given by stable probability distributions and their expression in terms
of special functions see Refgl2,13). An explicit expres-
- X; sion of W(F) is not obtainable; anyway it is rather simple to
F=> 3 (3 study the asymptotic regimes for small and large values of
i [5]:

where the sum runs over all the system particles out of the (
origin. If the origin of axes is occupied by a system particle, 4
Eq. (3) gives the gravitational force experienced by it. Once 3—F(§‘°’F2 forF—0"
the statistical ensemble of spatial distributions of particles is W(F)={ m
chosen, it is possible to evaluate the probability density func- a2
15

tion (PDP P(F) of the field F by taking the average of

S(F—3;x;/x%) over the ensemble conditioned to the fact
that the origin is occupied by a system particle. For the (8)
above introduced Poisson system in a volwhaith average
density of particles this calculation can be performed ex-
actly [5] by taking into account that in this case the stochas- 4n\ 23
tic positions of different particles are completely uncorre- Fo=277(1—5)
lated, and that spatially the system is statistically
homogeneous and isotropic. Consequently, the joint PDF ofhat is, Eq.(8) gives the two asymptotic behaviors, respec-
the positions of theN particles out of the origin, and condi- tively, for F<n?®andF>n?3roughly, where, H being the
tioned to having the origin occupied by another particle, caraverage volume per particle?? gives the order of the near-
be written as est particles interaction.
Now we show that the limit behavior for lardgeis mainly

1 determined by the position of the first nearest neighbb)
W' (4) particle. In order to show this result in more detail we have

to evaluate the probability (x)dx that, given a particle, its
which in this case is identical also to the unconditional jointfirSt NN is at a distance betweenandx+dx from it. Con-

PDF. These considerations permit to write: sidering that the probability of finding the NN particle be-
tweenx andx+dx is equal to the product of the probability

P(F)= f f

\% \%

FS/ZF_W: 27TnF_5/2 forF — o,

where

(€)

<k

pc()_()lr)_()2a v 1)_()N)=i1;[1

N 5 that there is no particle in the distance intervak{Cand the
F—E —'3 . probability 4rnx?dx of finding a generic particle in the in-
=10X terval of distancesx,x+ dx] [14], we can write

1'_\‘[ d3x 5
=1 V
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X cal applications characterized by the presence of binary sys-
1—J w(x)dx)47rx2n. (10 tems.
0 It is immediate to show that the final particle density in

The derivation of Eq(10) is based on the fact that for a f[he so-generated GP particle distributiomis ng(1+q). It

Poisson point process there is no correlation between the also possible to show that the CTPCF is

position of different particles. This implies that the probabil-

ity of finding no particle in (0] is independent of the prob- . 5(%) 20 R

ability of finding a particle in x,x+dx]. This of course §(X)= ——+ ———p(X), (14)
\ . . n  n(l+q)

holds for the homogeneous Poisson case, but in general it is

not true for spatially correlated point processes. Equation

w(X)=

(10) can be simply solved to give: and that all the other connectégboint correlation functions
with =3 vanish[15]. This means that all the statistics of a
_ 2 4w GP point process is reduced to the knowledge ahd £(x).
w(X)=4mnx’exp — —5-nx’|. (1) For this reason the GP particle distribution is the discrete

analog of the continuous Gaussian stochastic field. More-
By considering that the force exerted by the NN particle isover, sincep(x) is a PDF,&(X) is non-negative and inte-
f=1/x?, we can find, by a simple change of variable, thegrable over all the space, i.e., spatial correlations are positive
PDF of the modulus of the gravitational field generated byand short ranged. This is the reason why the GP point pro-
the first neighbor as cess can be seen as the most weakly correlated particle sys-
tem beyond the Poisson one.

47Tnf*3/2 .- . . .

W, (f)=2mnf S2exy — . (12) .To. show the val!d|ty of Eq(_l_4)_ is a quite S|mplle. task.

3 This is done by using the definition of averagenditional

densitync(i) of particles seen by a generic particle of the
L Es 23 -
In the limit >n"" Eq. (12) reads system at a vectorial distangefrom it in terms of the non-
W, (f)=2mnf 52 (13  diagonal part(x) of the CTPCH11]:
which is exactly the same asymptotic behavior of the PDF nc(i)zn[lJrh()Z)]. (15)

W(F) of the modulus of the total force found in E®). This

means that in a Poisson spatial distribution of particles, the R

main contribution to the force acting on one of them comedn the GP modein.(x) can be evaluated in the following
from the other particles in its neighborhood, implying thatway: the number of particles seen in average by a fixed par-
the force fluctuates a lot in space from particle to particle. ticle in the volume elemend®x, around the vectorial dis-

tancex from it, is nd®x if the chosen particle is neither a
ll. THE GAUSS-POISSON POINT PROCESS parent nor a daughtefi.e., with probability (1-q)/(1

+q)) and[n+ p(f)]d3x if it is either a parent or a daughter

We now discuss the one-point statistical properties of th?i e.. with a complementary probabilityg2(1+ q)]. By av-

gravitational Newtonian field in a well defined class of ing the tw ibiliti ith the riaht weiaht h
weakly correlated particle systems. In particular, we analyzc?ragmg € two possibiiities wi € rignt weights, we have

the spatial distributions of pointlike field sourcésf unit

mass$ generated by GP point procesdesiefly GP particle -
distributions. A GP particle distributiori8,9] is built in the Ne(x)=n
following way.

(1) Take a statistically homogeneous and isotropic Pois- ) L
son spatial distribution of particles of average densify Which is equivalent to Eq(14). Note that ifp(x) depends
>0: only onx (i.e., it is spherically symmetrj¢cthen the particle

(2) The next step is to pick up randomly a fractiorcq  distribution, in addition to being statistically homogeneous
<1 of these Poisson points called “parents” and attach tdi-€.» translational invariantis i\lso statistically isotropic.
each of them a new “daughter” particle in the volume ele- It is worth noting that, ap(x) is by definition integrable
mentd3x at vectorial distanca from the “parent” particle ~ With unit integral, typical fluctuations of the numba¥of
with probability p()z)dg)(’ each parent independent of the particles generated in single realizations of the GP process in

L o a sufficiently large volumé/ (with n and q fixed) with re-
others. The functiop(x) is the PDF of the vectorial distance spect to the average valgdl)=nV is of the order ofnV

x of attachment and clearly is integrable and normalized. INbs in the Poisson case of the same average dengibut
what follows we will suppose tha](—f):p(i). with a larger prefactor which is very small with respect to

The net effect of this algorithm is of substituting a frac- nV in the largeV limit. Consequently, in all the following
tion g of particles of the initial Poisson system with an equalcalculations we will use, as in the Poisson case, dirddtly
number of correlated binary systems. This is the reason why nV, the correction due to fluctuations vanishing in the in-
this kind of point process can be very useful in all the physi-finite volume limit.

2q -
g P
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IV. GENERALIZATION OF THE HOLTZMARK homogeneous GP point process with a statistically inhomo-
STATISTICS TO GAUSS-POISSON POINT PROCESSES geneous and radial Poisson particle distribution generated by
We now try to generalize the Holtzmark PDF to this the following algorithm: once the spageai_f, partitiohed in. cells
weakly correlated case. Let us suppose of having a GP paff volumedV, the cell around the point is occupied with
ticle distribution with fixedn>0 and 0<q=<1 in a volume  probabilityn,(x)dV [dV must be chosen in such a way that
V. As in the isotropic Poisson case let us also set the coordin(x)dV<1] or stays unoccupied with the complementary
nate system in such a way that the origin is occuE)ied by Probability 1- n.(x)dV independent of the other cells.
particle of the system. We want to calculate the FE{F) of Approximations(17) and (18) and the conditiorN=nV
the total gravitational fiel& acting on the origin of coordi- permit us to use the method introduced in the preceding sec-
nates due to all the particles out of the origin conditioned tation to find P(F) which, in the limitV— +c, can be shown
the fact that this point is occupied by a particle. Therefore, ifto be given by
the particles seen by the one in the origin afe and
Pe(X1.X2, . .. Xy) is the joint conditional PDF of their po- N
sitions, we can write P(F)=

(277)4 d3kexik-F—nCgp(k)], (19

i pC()_(’la)ZZy e ')_()N)' o) Where

. 2q - T
N = — 3 _ a—ik-x/x
x(ﬁ—E ﬁ) 6 Cop(k) Cp(k)+n(1+q)fdxp(X)[1 e 1,

(20

Since in any GP point process, two-point correlations arévith Cp(k) given by Eq.(6). We sketch now the main steps

presentp,(X; Xy, - . . Xy) cannot be written rigorously as a to find Egs.(19) and(20) using the approximations given by

product ofN one-particle PDF’s as in the Poisson case. ThisEqS: (17) and(18). Stgrting from Eq(16) with the "’?pprOXi'
ation (17), and using the Fourier representation of the

feature would prevent us from applying the method used i ¢ ' .
the preceding section for the Poisson point processes, and aifa¢ function we can write
explicit evaluation oﬂD(IE) would then become impossible. N
For this reason we introduce an approximation consisting in - p(g)= f d3kei‘z'ﬁ< f d3XT()Z)e_”Z')le3) _
\Y
(21)

imposing the factorization (2m)°

N
Pe(X1,Xz, - - ,XN):iHl (%) (17 By using the fact thaf,d3x7(x)=1, in the previous equa-
tion we can make the substitution
in the best possible way. This is done by taking into account L L
that, ash(x) is short-rangedbeing proportional to the inte- J d3xq-(>?)e*‘k';5=1—J’ d3x7-()2)(1—e’ik'x?),
grable functionp(i)] and the higher-order connected corre- v v
lation functions vanish, we can limit ourselves to use the

only information about the conditional density(x) around m I/(izogl\\//v?t% ?}igga(lg : Iv?u?ghv\\:\?epuus“: Thgvn;{glt(r:g?ntgt?cal
the occupied origin. As a matter of fact, directly from the '

definition of GP point processes, and the fact that the CTPCEeflnltlon of the exponential

is short ranged and of small amplitude, we can say that tak- v
ing an arbitrary particle of such a system, it will see at eA= |im (1+_
enough large distance from it a Poiss@®., uncorrelated VA v

particle distribution of particles of average dengityand at

short scale, wherb(x) is appreciable, an almost radial par- As shown below by a direct comparison with the results of

. e . N numerical simulations, this approximation is quite accurate
ticle »dlstnb.unon of |nhomog<ineous d§n3|nyc(x) _en[l at least in both the large and the snfallimits. The function
+h(x)]. This leads to having(x) proportional ton.(x):

A(K)=exd —nCgp(K)] is the approximateccharacteristic

2q . function of the total stochastic forde acting on the particle
. 1+ N1+ q) p(x) in the origin in the GP case. As aforementioned, if the PDF
7(X)= 24 . (18 p(x) depends only om:lx|, the particle distributiorl is sta-
V+ it tistically isotropic andP(F) will depend only orF = |F| and

A(k) on k=|Kk|. That is, the direction of is completely
Note that this is equivalent to approximating the spatial distandom while the PDF oF is given by[rewriting p()Z) as
tribution of N particles generated by the given statistically p(x) to exhibit the dependence only o
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W(F)=47F2P(F) For =1 there will be logarithmic corrections to E(R5).
¢, andc, are two positive constants depending fx) in
2F [ 4(2m)%nK? the following way:
=—f dk ksin(kF)exp, — —————
a Jo 15 B .
o sinx
cl=—J’ dx x(5+3)’2<1——), (26)
Smq “dx @ 1Xz' X 22 2l "
~1vq X Xp(X) — 3 sin F . (22
_ 1/1
We limit the rest of the discussion to this isotropic case. As 2= o A

for the Poisson point process, it is not possible to find an

explicit form of P(If) [or W(F)]. However we can connect where(---)=fd3x(---)p(x) is the average over the PDF
the asymptotic behaviors d?(F) to those ofp(x) and to  p(x). Consequently, by using the results of E(®2)—(26),

that of the Poisson case. we can distinguish three cases for what concerns the
asymptotic behavior oP(F).
A. Large F expansion (1) For >0 the dominating part iA(k) at smallk is

exactly the same as in the homogeneous Poisson case with

In order to study the largé behavior ofP(F), it is im- the same average densityi.e.,

portant to use the general properties of the sikakpansion
of the characteristic functioA(IZ) to the lowest order greater . an
than zero. In particulaf16], in the isotropic case, iP(F) A(k)=1- 1_5(27Tk)3/2v (27)
=CF~ ¢ at sufficiently largeF [or W(F)=47CF2~¢], with

C>0 anda>3 to guarante@(lf) to be a normalized PDF

..n
in three dimensions, then which implies P(F)~—~§F*9’2 [or equivalently W(F)

=27nF~ %7 at largeF with the same amplitude of the pure

A(E):f d3Fexp(—ik-F)P(F) Poisson case. In fact in this case,@s 0, the shot noise at

small distance from the particle in the origin, which we have

1 seen to dominate the largelimit in the statistically homo-
1- g]-'zk2 if a>5 geneous Poisson point process, is purely Poissonian receiv-
= (23 ing only a negligible contribution fronp(x).
1-ak*? if3<as<5, (2) For B=0 we again have a scaling behavior typical of

. the isotropic Poisson case, but the coeffici€nof P(If) is
whereF?=[d>F F?P(F) is the second moment of the force |arger, receiving a positive contribution from two-point cor-
PDF, anda>0 is a constant characterizing the singular partrelations, i.e., fromp(x):
of the smallk expansion which is given by

R 2 1/2 c
sz) AR =1-8m|ET S8 e o

a=47-rCJ:dxx2“(l—T . (24) 15 (it

o e _ which implies againP(F)=CF~%2 at largeF but with a
Note thata>5 implies that7 < is finite. For the Poisson case larger amplitudeC than in the isotropic Poisson case:

a=9/2 andC=n/2, and correspondingly, from Ed23),
A(K)=1—(4n/15)(27k)%? at smallk as it must be. n qB

Therefore, our strategy consists in findiagand C by C= §+ m (29)
connecting the expansion given in EQJ) to the form of
p(x) and in particular to its smai behavior. Let us suppose |n practice, from Eqs(22)—(26), we have the same scaling
thatp(x) =Bx” at sufficiently smalk [in any case8>0 and  pepayior of P(F) of the isotropic Poisson case but with a
B>—3 asp(x) is a PDF of a three-dimensional stochastlcIarger average density’ =n-+2qB/(1+q). This is due to

variabld. It is quite simple to show that at smalthe inte- the fact that the particle in the origin sees at small scales a

gral spatial distribution locally identical to a Poisson one with
2 K such an effective average density.
|(k;lg)zf dx X2p(x)| 1— X_sin( _2> (3) For <0 th(_a smal_lk be_havior ofA(K) is radically
0 k X changed from the isotropic Poisson case, as the second term
in Eq. (20) is dominant onCp(k). In particular from
behaves as follows: Eqgs(19), (20), and(25) we have that
Clk(3+ﬁ)/2 |f _3<B<1 87TC1q
l(k"g)_[czkz if B=1. (25 R
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i.e., 100 . ——

A ( k) —1— - ;q k(3+ B) /2_ (30) 10 E_ x\\\ X

This meangsee Eq(23)] that 2— o= —(5+8)/2. Fromthis _  'F

relation we see that in this case the two integrals, respecg F
tively in Eq. (24) and in the first of Eq(26) coincide. This 01k

implies that P(F)=CF~(*A”2 [or equivalently W(F)
=47 CF~ A2 with

0,011

c=-— B (31) o
0,001 0,01

ol il vl il 4l ]

This is due to the fact that at small scales the particle in the FG. 1. C ted tWo-Doint lation functi
origin sees a strongly nonuniform, radially decreasing ef'fec-Sureol i'n a.sino?enfgaﬁzatio?\-pvsilt?l ];g[g acl)(i)nnts ?nng I(?:J(t;(l)c tr:)iac;f
tive density of particles. 9 ' ; P

In all th taft b lculated functi volumeV=1 for the two Gauss-Poisson point processes both with
of Brlaandcgsbilsusagogésa(ISO():aa?ld ?22)8‘ culated as a function g=0.5 and where, respectivelfi) p(x) is the box function(box)

given by Eq.(33) with cutoff at x,=0.012 (continuous ling and
where (i) p(x)=(1/dmxo)exp(x/x)x’> (PL) with xq=0.012
B. Small F expansion (dashed ling For comparison also the functionx®/is shown.

The smallF behavior of P(F) can be connected to the

; ; ; 3
largek behavior of its Fourier transform. First of all we note l.e., In reference to the preceding sectidr 3/4mx, and 8

=0. That is the probability of attaching a daughter particle at

that
a distance betweexandx+ dx from its parent is 82dx/x3
. o tee _ if X<Xg and zero foix>Xx,, while the direction ok is com-
kLITooAfWI (k”B)_A'WfO doep(x)=1. pletely random. As shown above this choicepgk) should
give
This simple observation impligsee Eq.(22)] that for any
GP point process, the asymptotically largebehavior of WIE ot 3q 5/
A(IZ) is similar to that of the isotropic Poisson case with the (F)=| 2mn x8(1+q)

same average density, but with an amplitude reduced by a

fafctor ex.peth/(lJrq). ]E:c;]nsr?quently, the smejH behavjor at largeF, that is, with the same exponent but with a larger
of W(F) is t € same O.t e homogeneous Poisson point proélmplitude than the pure isotropic Poisson case with the same
cess but with an amplitude reduced by the same factor erverage densityn. At small F, as shown above, the
[—29/(1+0)]. ie. asymptotic behavior 0WV(F) should be given by Eq32).

(2) In the second casp(x) decays exponentially fast at

29 | 4 __, ) lar N 5 )
~ _ gex but it is singular ax™ < at smallx, i.e.,
W(F) exp( 17q/3nF0 F2, (32)
X
whereF is given by Eq.(9). 1 ex;{ - r_)
_ 0
PO= g 7 (34

V. COMPARISON WITH SIMULATIONS

The valiqlity of these t_heoretical re_zsults_is We!l supported-l-hiS choice ofp(x) should give
by the statistical analysis of numerical simulations of two
different kinds of GP point processes with two explicit
choices ofp(x) (see Fig. 1, for which the PDRN(F) of F is W(F)= LF*@*B)/Z
directly measured Xo(1+0q)

(1) In the first case(x) is chosen to be simply a positive
constant up to a fixed distaneg>0 and zero beyond this at largeF with 8= —2. Again Eq.(32) should be valid at
distance: smallF.

The results of these simulations for the large and the small
F scaling behaviors oW(F) show a very good agreement

Y - ifO<r=xo 33 (see Figs. 2 and)3with the theoretical predictions given in
P(X)=1 47X (33 the preceding section for what concerns both exponents and
0 if r>xg, amplitudes. Consequently, the approximation at the base of
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I I T A I [ I
5| RNy _
— Box-th-large F 10 & ---- PL-th-large F
—- Box _ h — PL
-~ Poisson 10°F --- Polsson n
--- Box-th-small F > --- PL-th-small F

) o~
(18
L L
= S 10
10-10_
~~~~~~ A1
10° 10 \
10-12_ \\ ™
10121 : . . 10t | I | | N -
10° 10* 10° 10° 107 10° 10° 10° 10 10°
F F
FIG. 2. Comparison between the theoretical predictimsx- FIG. 3. As in the previous figure for the case wherg) is

th-large F and Box-th-smallF) given in the text anq s.imulations given by Eq.(34) with g=0.5 andx,=0.0055. The system has
(Box) of the PDFW(F) of the modulus of the gravitational force peen simulated through 2@L0° particles in a cubic volume of unit

for the GP case wherg(x) is a box function given by Ed33) with  gjzej.e., ten times the density in Figs. 1 and 2 but rescaling appro-
q=0.5 andxy=0.012, simulated with 1?5105 point particles in a  yriatelyx,) in order to increase the statistics to make more clear the
cubic volume of unit size. The theoretical behaviors at small ancﬁmdifications with respect the Poisson particle distributiBois-

large fields computed as explained in the text show a very goodgy with the same number density. Asymptotic theoretical predic-

agreement with simulations. For comparison the behavior of thgjons for small and larg€ are, respectively, indicated through PL-
Holtzmark PDF for a homogeneous Poisson particle dlstrlbutloqh_sma”,: and PL-th-largeF.

(Poisson with the same number density is also showpwoint-

dashed ling nating in determining the PDF of the for¢m particular in

) ) ] the large field limij. This implies that the gravitational force
these calculations can be considered valid to study the ongyctuates a lot spatially from particle to particle. However
p0|n_t statistics of the gravitational field acting on the systemy,is does not mean at all that the forces felt by two different
particles. particles are spatially uncorrelated. On the contrary it is

simple to show that they astronglycorrelated by analyzing
VI. DISCUSSION the statistical information encrypted in the Poisson equation

In this paper we have studied the gravitational force quc-"nkIng the gravitational fieldi.e., forcg E(x) in the spatial

tuations in the so-called GP particle distributions, which carPoINt X 10 the stochastic matter density(x) in the same

be considered as the class of most weakly correlated poift®nt
processes beyond the Poisson one. For this particle system
we have seen how to generalize, through appropriate ap-
proximations, the methods developed for the Poisson case
order to find the PDF of the gravitational force acting on
each particle. In the GP case, important deviations from th
Poisson behavior are found both in the small and in the large == o =10

F limits. While in the former limit one has, with respect to (Ik- B =(Ine(k)]%). (36)

the Poisson case, only a change of amplitude and a consers > e - . .
vation of the scaling exponent, in the latter limit even theWhereEF(k) andng(k) are, respectively, the Fourier trans-

scaling exponent can be strongly modified. This can bdorms of E(x) andn(x). The right-hand side of E¢36) is

caused mainly by the small scale behavior of CTPCF, whictgqual(for k+0 and apart from a normalization factoiv}/to

can introduce strong modification in the large force regimethe power spectrun®(k) of the density field which is the
when diverging at small distances. All these theoretical preFourier transform of the CTPCE(x). Since in a homoge-
dictions are confirmed by direct results in numerical simula- ; ; >\ e i
tions in which both the scaling exponents of the force PDF a}r:eous P0|s§oq pomt. Proces(sx) 'S given b): Ea.(1), we
large and smalF and the amplitudes have been found in ave thatS(k) is positive and constant at dtl Therefore,

good agreement with the theoretical values obtained througf’lnalyZing Eq/(36) for I.(H.O’ We can say th"’.lt two-point cor-
the approximations used. relations of the gravitational field decay in space at large

Before concluding, an important observation has to peseparationsc as 1K, 1.€., very s_lowly. In the GP class Qf
made: as seen above in both Poisson and GP point processBQ!nt processes the situation IS analogous to the Poisson
the contribution to the total gravitational force felt by a par-case, but the power spectrugfk) receives a contribution
ticle due to the other particles in its neighborhood is domi-also from the nondiagonal parfx) of £(x). Since in all GP

V-E(X)=—n(X). (35)

Ey taking the ensemble average of the square modulus of the
gourier transform of both sides of E(5) we obtain
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point processetl(i) is integrable over all the space, with geneous correlated particle distribution in which a systematic
positive integral, we obtain again that field-field correlationstudy of the gravitational force Chandrasekhar is ddiig.
decays as ¥/ but with a larger amplitude with respect to a This study suggests some basic ingredients to be used in
Poisson particle distribution with the same average densitfuture attempts of extending the analysis to more complex
This shared behavior of Poisson and GP point processes @®rrelated particle distributions.

due to the combination of two facts.

(1) For both caseg(x) has a finite and positive integral
over all the space.
(2) The fact that the contribution to the gravitational field ACKNOWLEDGMENTS
(i.e., forcg in a point due to all faraway particles varies
slowly in space, because of the long-range nature of the el- We thank L. Pietronero and M. Joyce for useful comments
ementary particle-particle gravitational interactioie., and discussions. A.G. acknowledges the Physics Department
~1/x?). of the University “La Sapienza” of Rométaly) for support-
Finally we can say that the importance of this work ising this research. F.S.L. acknowledges support through Grant
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