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Gravitational force in weakly correlated particle spatial distributions
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We study the statistics of the gravitational~Newtonian! force in a particular class of weakly correlated spatial
distributions of pointlike and unitary mass particles generated by the so-called Gauss-Poisson point processes.
In particular we extend to these distributions the analysis that Chandrasekhar introduced for purely Poisson
processes. In this way we can find the explicit asymptotic behavior of the probability density function of the
force for both large and small values of the field as a generalization of the Holtzmark statistics. In particular,
we show how the modifications at large fields depend on the density correlations introduced at small scales.
The validity of the introduced approximations is positively tested through a direct comparison with the analysis
of the statistics of the gravitational force in numerical simulations of Gauss-Poisson processes.
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I. INTRODUCTION

The knowledge of the statistical properties of the grav
tional field in a given spatial distribution of point particle
provides an important information about the system in ma
cosmological and astrophysical applications in which the
teracting masses are treated as pointlike particles. In
such information acquires particular importance in conte
such as the stellar dynamics and the cosmologicalN-body
simulations for the study of the formation of structures fro
initial mass density perturbations at least at the ‘‘granul
scale@1,2#. Similar studies are involved in other domains
physics, such as the statistical physics of thedislocation-
dislocation interaction for what concerns the analysis
crystal defects in condensed matter physics@3#.

Until now a complete study of this problem has been
complished only in the case of uncorrelated particle spa
distributions obtained by Poisson point processes@4,5#. Par-
tial results have been found more recently in two other ca
~1! a fractal particle distribution@6#, and~2! a radial density
of particles@7#. In this paper we study the case of the s
called Gauss-Poisson~GP! class of point processes@8,9#
which generates particle spatial distributions characteri
only by short-range two-point correlations, i.e., connec
n-point correlation functions are integrable forn52 and
vanish forn>3. In this sense it can be seen as the first s
of correlated systems beyond the completely uncorrela
Poisson point process, and is characterized spatially by
presence of binary systems. For this last reason the intro
tion of such a class of point processes is useful to study
statistical physics of many spatial distributions of partic
characterized mainly by such binary structures.

First of all we recall the main rigorous results about t
probability density function of the gravitational force in
particle system generated by a pure homogeneous and
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tropic Poisson point process as obtained by Chandrasekh
Ref. @5#. For the GP class of point processes we genera
these methods introducing appropriate approximations in
der to exploit, in this framework, as much as possible
information encrypted in the two-point density-density co
relation function. In this way an integral form for the cond
tional probability density function of the gravitational forc
is obtained, and explicit scaling laws for both large and sm
values of the force are given for any spatial distribution
point particles belonging to the GP class. The validity
these theoretical results is confirmed by direct compari
with those obtained by the statistical analysis of numeri
simulations of exact GP particle distributions.

II. GRAVITATIONAL FORCE PROBABILITY DENSITY IN
A POISSON POINT PROCESS

First, let us recall Chandrasekhar’s@5# results for the Pois-
son case. A homogeneous and isotropic Poisson spatial
tribution of pointparticles with average number densityn in a
volumeV can be obtained as follows.

~1! Partition the space in cells of volumedV.
~2! Occupy randomly with a particle of unit mass each

these cells with probabilityndV ~with n.0 andndV!1) or
leave it empty with complementary probability 12ndV with
no correlation between different cells.

From this definition it is simple to find that the averag
number of particles in a box of volumeV is simply ^N&
5nV, and that fluctuations from realization to realization
this number are of the order ofAnV ~the so-called Poisson o
white noise!, which become negligibly small with respect t
^N& in the largeV limit. In general, the internal spatial cor
relations of a stochastic spatial distribution of unit mass p
ticles are measured by the connected two-point correla
function ~CTPCF! j(xW ) defined by
©2004 The American Physical Society10-1
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j~xW !5
^n~xW0!n~xW01xW !&

n2
21,

wheren(xW )5( id(xW2xW i) is the microscopic number densit
field in which the sum is extended to all the particles posit
xW i and^•••& is the ensemble average~or volume average in
the infinite volume limit in case of ergodicity, as in all poin
processes treated here!. Since in the definition of the Poisso
case there is no correlation between the probability of oc
pations of different cells, it is simple to show that the CTPC
has only the diagonal part due to granularity, i.e.,

j~xW !5d~xW !/n, ~1!

meaning that each particle is spatially correlated only w
itself. Any other statistically homogeneous particle distrib
tion with a well defined average densityn.0 is character-
ized by a CTPCF of the form@10,11#

j~xW !5
d~xW !

n
1h~xW !, ~2!

whereh(xW ) is the nondiagonal part due to correlations b
tween the positions of different particles.

Fixing arbitrarily all the physical constants equal to on
the gravitational field acting on the origin of axis is given

FW 5(
i

xW i

xi
3

, ~3!

where the sum runs over all the system particles out of
origin. If the origin of axes is occupied by a system partic
Eq. ~3! gives the gravitational force experienced by it. On
the statistical ensemble of spatial distributions of particle
chosen, it is possible to evaluate the probability density fu
tion ~PDF! P(FW ) of the field FW by taking the average o
d(FW 2( ixW i /xi

3) over the ensemble conditioned to the fa
that the origin is occupied by a system particle. For
above introduced Poisson system in a volumeV with average
density of particlesn this calculation can be performed e
actly @5# by taking into account that in this case the stoch
tic positions of different particles are completely uncor
lated, and that spatially the system is statistica
homogeneous and isotropic. Consequently, the joint PDF
the positions of theN particles out of the origin, and cond
tioned to having the origin occupied by another particle, c
be written as

pc~xW1 ,xW2 , . . . ,xWN!5)
i 51

N
1

V
5

1

VN
, ~4!

which in this case is identical also to the unconditional jo
PDF. These considerations permit to write:

P~FW !5E
V

. . . E
V
F)

i 51

N
d3xi

V GdS FW 2(
i 51

N
xW i

xi
3D .
03111
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By using the Fourier representation of the Dirac delta fu
tion and taking the infinite volume limitV→1` with N/V
5n fixed ~fluctuations ofN from the average valuenV can
be shown to give vanishing corrections in the infinite volum
limit !, we obtain:

P~FW !5
1

~2p!3E d3keikW•FW 2nCP(k) , ~5!

where

CP~k!5
4

15
~2pk!3/2. ~6!

Note thatA(k)5exp@2nCP(k)# is the Fourier transform of
P(FW ), i.e., A(k) is the so-calledcharacteristic functionof
the stochastic forceFW @4#. SinceCP(k) depends only onk
5ukW u, P(FW ) will depend only onF5uFW u>0. That is, the
direction (u,f) of FW is completely random and statisticall
the modulusF is distributed following the PDFW(F)
54pF2P(FW ) that can be rewritten as

W~F !5
2F

p E
0

`

dkksin~kF!expS 2
4n

15
~2pk!3/2D . ~7!

This important result is known under the name ofHoltzmark
PDF ~for a general account of the Holtzmark PDF and oth
stable probability distributions and their expression in ter
of special functions see Refs.@12,13#!. An explicit expres-
sion ofW(F) is not obtainable; anyway it is rather simple
study the asymptotic regimes for small and large values oF
@5#:

W~F !.5 4

3p
F0

23F2 for F→01

4A2p

15
F0

3/2F25/252pnF25/2 forF→`,

~8!

where

F052pS 4n

15D 2/3

~9!

That is, Eq.~8! gives the two asymptotic behaviors, respe
tively, for F!n2/3 andF@n2/3 roughly, where, 1/n being the
average volume per particle,n2/3 gives the order of the near
est particles interaction.

Now we show that the limit behavior for largeF is mainly
determined by the position of the first nearest neighbor~NN!
particle. In order to show this result in more detail we ha
to evaluate the probabilityv(x)dx that, given a particle, its
first NN is at a distance betweenx andx1dx from it. Con-
sidering that the probability of finding the NN particle b
tweenx andx1dx is equal to the product of the probabilit
that there is no particle in the distance interval (0,x# and the
probability 4pnx2dx of finding a generic particle in the in
terval of distances (x,x1dx# @14#, we can write
0-2
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v~x!5S 12E
0

x

v~x!dxD 4px2n. ~10!

The derivation of Eq.~10! is based on the fact that for
Poisson point process there is no correlation between
position of different particles. This implies that the probab
ity of finding no particle in (0,x# is independent of the prob
ability of finding a particle in (x,x1dx#. This of course
holds for the homogeneous Poisson case, but in general
not true for spatially correlated point processes. Equa
~10! can be simply solved to give:

v~x!54pnx2expS 2
4p

3
nx3D . ~11!

By considering that the force exerted by the NN particle
f 51/x2, we can find, by a simple change of variable, t
PDF of the modulus of the gravitational field generated
the first neighbor as

Wnn~ f !52pn f25/2expS 2
4pn f23/2

3 D . ~12!

In the limit f @n2/3 Eq. ~12! reads

Wnn~ f !.2pn f25/2, ~13!

which is exactly the same asymptotic behavior of the P
W(F) of the modulus of the total force found in Eq.~8!. This
means that in a Poisson spatial distribution of particles,
main contribution to the force acting on one of them com
from the other particles in its neighborhood, implying th
the force fluctuates a lot in space from particle to particle

III. THE GAUSS-POISSON POINT PROCESS

We now discuss the one-point statistical properties of
gravitational Newtonian field in a well defined class
weakly correlated particle systems. In particular, we anal
the spatial distributions of pointlike field sources~of unit
mass! generated by GP point processes~briefly GP particle
distributions!. A GP particle distribution@8,9# is built in the
following way.

~1! Take a statistically homogeneous and isotropic Po
son spatial distribution of particles of average densityn0
.0;

~2! The next step is to pick up randomly a fraction 0,q
<1 of these Poisson points called ‘‘parents’’ and attach
each of them a new ‘‘daughter’’ particle in the volume e
ment d3x at vectorial distancexW from the ‘‘parent’’ particle
with probability p(xW )d3x, each parent independent of th
others. The functionp(xW ) is the PDF of the vectorial distanc
xW of attachment and clearly is integrable and normalized
what follows we will suppose thatp(2xW )5p(xW ).

The net effect of this algorithm is of substituting a fra
tion q of particles of the initial Poisson system with an equ
number of correlated binary systems. This is the reason
this kind of point process can be very useful in all the phy
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cal applications characterized by the presence of binary
tems.

It is immediate to show that the final particle density
the so-generated GP particle distribution isn5n0(11q). It
is also possible to show that the CTPCF is

j~xW !5
d~xW !

n
1

2q

n~11q!
p~xW !, ~14!

and that all the other connectedl-point correlation functions
with l>3 vanish@15#. This means that all the statistics of
GP point process is reduced to the knowledge ofn andj(xW ).
For this reason the GP particle distribution is the discr
analog of the continuous Gaussian stochastic field. Mo
over, sincep(xW ) is a PDF,j(xW ) is non-negative and inte
grable over all the space, i.e., spatial correlations are pos
and short ranged. This is the reason why the GP point p
cess can be seen as the most weakly correlated particle
tem beyond the Poisson one.

To show the validity of Eq.~14! is a quite simple task.
This is done by using the definition of averageconditional

densitync(xW ) of particles seen by a generic particle of th
system at a vectorial distancexW from it in terms of the non-
diagonal parth(xW ) of the CTPCF@11#:

nc~xW !5n@11h~xW !#. ~15!

In the GP modelnc(xW ) can be evaluated in the following
way: the number of particles seen in average by a fixed p
ticle in the volume elementd3x, around the vectorial dis-
tancexW from it, is nd3x if the chosen particle is neither
parent nor a daughter~i.e., with probability (12q)/(1
1q)) and@n1p(xW )#d3x if it is either a parent or a daughte
@i.e., with a complementary probability 2q/(11q)]. By av-
eraging the two possibilities with the right weights, we ha

nc~xW !5nF11
2q

n~11q!
p~xW !G ,

which is equivalent to Eq.~14!. Note that if p(xW ) depends
only on x ~i.e., it is spherically symmetric!, then the particle
distribution, in addition to being statistically homogeneo
~i.e., translational invariant!, is also statistically isotropic.

It is worth noting that, asp(xW ) is by definition integrable
with unit integral, typical fluctuations of the numberN of
particles generated in single realizations of the GP proces
a sufficiently large volumeV ~with n and q fixed! with re-
spect to the average value^N&5nV is of the order ofAnV,
as in the Poisson case of the same average densityn ~but
with a larger prefactor!, which is very small with respect to
nV in the largeV limit. Consequently, in all the following
calculations we will use, as in the Poisson case, directlyN
5nV, the correction due to fluctuations vanishing in the
finite volume limit.
0-3
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IV. GENERALIZATION OF THE HOLTZMARK
STATISTICS TO GAUSS-POISSON POINT PROCESSES

We now try to generalize the Holtzmark PDF to th
weakly correlated case. Let us suppose of having a GP
ticle distribution with fixedn.0 and 0,q<1 in a volume
V. As in the isotropic Poisson case let us also set the coo
nate system in such a way that the origin is occupied b
particle of the system. We want to calculate the PDFP(FW ) of
the total gravitational fieldFW acting on the origin of coordi-
nates due to all the particles out of the origin conditioned
the fact that this point is occupied by a particle. Therefore
the particles seen by the one in the origin areN, and
pc(xW1 ,xW2 , . . . ,xWN) is the joint conditional PDF of their po
sitions, we can write

P~FW !5E
V

. . . E
V
F)

i 51

N

d3xi Gpc~xW1 ,xW2 , . . . ,xWN!•d

3S FW 2(
i 51

N
xW i

xi
3D ~16!

Since in any GP point process, two-point correlations
present,pc(xW1 ,xW2 , . . . ,xWN) cannot be written rigorously as
product ofN one-particle PDF’s as in the Poisson case. T
feature would prevent us from applying the method used
the preceding section for the Poisson point processes, an
explicit evaluation ofP(FW ) would then become impossible
For this reason we introduce an approximation consisting
imposing the factorization

pc~xW1 ,xW2 , . . . ,xWN!5)
i 51

N

t~xW i ! ~17!

in the best possible way. This is done by taking into acco
that, ash(xW ) is short-ranged@being proportional to the inte
grable functionp(xW )] and the higher-order connected corr
lation functions vanish, we can limit ourselves to use
only information about the conditional densitync(xW ) around
the occupied origin. As a matter of fact, directly from th
definition of GP point processes, and the fact that the CTP
is short ranged and of small amplitude, we can say that
ing an arbitrary particle of such a system, it will see
enough large distance from it a Poisson~i.e., uncorrelated!
particle distribution of particles of average densityn, and at
short scale, whereh(xW ) is appreciable, an almost radial pa
ticle distribution of inhomogeneous densitync(xW )5n@1
1h(xW )#. This leads to havingt(xW ) proportional tonc(xW ):

t~xW !5

11
2q

n~11q!
p~xW !

V1
2q

n~11q!

. ~18!

Note that this is equivalent to approximating the spatial d
tribution of N particles generated by the given statistica
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homogeneous GP point process with a statistically inhom
geneous and radial Poisson particle distribution generate
the following algorithm: once the space is partitioned in ce
of volumedV, the cell around the pointxW is occupied with
probabilitync(xW )dV @dV must be chosen in such a way th
nc(xW )dV!1] or stays unoccupied with the complementa
probability 12nc(xW )dV independent of the other cells.

Approximations~17! and ~18! and the conditionN5nV
permit us to use the method introduced in the preceding
tion to find P(FW ) which, in the limitV→1`, can be shown
to be given by

P~FW !5
1

~2p!3E d3k exp@ ikW•FW 2nCGP~kW !#, ~19!

where

CGP~kW !5CP~k!1
2q

n~11q!
E d3x p~xW !@12e2 ikW•xW /x3

#,

~20!

with CP(k) given by Eq.~6!. We sketch now the main step
to find Eqs.~19! and~20! using the approximations given b
Eqs.~17! and ~18!. Starting from Eq.~16! with the approxi-
mation ~17!, and using the Fourier representation of t
Dirac function we can write

P~FW !5
1

~2p!3E d3keikW•FW S E
V
d3xt~xW !e2 ikW•xW /x3D N

.

~21!

By using the fact that*Vd3xt(xW )51, in the previous equa
tion we can make the substitution

E
V
d3xt~xW !e2 ikW•

xW

x3512E
V
d3xt~xW !S12e2 ikW•

xW

x3D ,
with t(xW ) given by Eq.~18!. Then we putN5nV taking the
limit V→` with n fixed, for which we use the mathematic
definition of the exponential

eA5 lim
V→1`

S 11
A

VD V

.

As shown below by a direct comparison with the results
numerical simulations, this approximation is quite accur
at least in both the large and the smallF limits. The function
A(kW )5exp@2nCGP(kW)# is the approximatedcharacteristic

function of the total stochastic forceFW acting on the particle
in the origin in the GP case. As aforementioned, if the P
p(xW ) depends only onx5uxW u, the particle distribution is sta
tistically isotropic andP(FW ) will depend only onF5uFW u and
A(kW ) on k5ukW u. That is, the direction ofFW is completely
random while the PDF ofF is given by@rewriting p(xW ) as
p(x) to exhibit the dependence only onx]
0-4
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W~F ![4pF2P~FW !

5
2F

p E
0

`

dk ksin~kF!expH 2
4~2p!3/2nk3/2

15

2
8pq

11qE0

`

dx x2p~x!F12
x2

k
sinS k

x2D G J . ~22!

We limit the rest of the discussion to this isotropic case.
for the Poisson point process, it is not possible to find
explicit form of P(FW ) @or W(F)]. However we can connec
the asymptotic behaviors ofP(FW ) to those ofp(x) and to
that of the Poisson case.

A. Large F expansion

In order to study the largeF behavior ofP(FW ), it is im-
portant to use the general properties of the smallk expansion
of the characteristic functionA(kW ) to the lowest order greate
than zero. In particular@16#, in the isotropic case, ifP(FW )
.CF2a at sufficiently largeF @or W(F).4pCF22a], with
C.0 anda.3 to guaranteeP(FW ) to be a normalized PDF
in three dimensions, then

A~kW !5E d3Fexp~2 ikW•FW !P~FW !

5H 12
1

6
F 2k2 if a.5

12aka23 if 3 ,a<5,

~23!

whereF 25*d3F F2P(FW ) is the second moment of the forc
PDF, anda.0 is a constant characterizing the singular p
of the smallk expansion which is given by

a54pCE
0

`

dx x22aS 12
sinx

x D . ~24!

Note thata.5 implies thatF 2 is finite. For the Poisson cas
a59/2 and C5n/2, and correspondingly, from Eq.~23!,
A(kW ).12(4n/15)(2pk)3/2 at smallk as it must be.

Therefore, our strategy consists in findinga and C by
connecting the expansion given in Eq.~23! to the form of
p(x) and in particular to its smallx behavior. Let us suppos
thatp(x).Bxb at sufficiently smallx @in any caseB.0 and
b.23 asp(x) is a PDF of a three-dimensional stochas
variable#. It is quite simple to show that at smallk the inte-
gral

I ~k;b!5E
0

`

dx x2p~x!F12
x2

k
sinS k

x2D G
behaves as follows:

I ~k;b!.H c1k(31b)/2 if 23,b,1

c2k2 if b>1.
~25!
03111
s
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For b51 there will be logarithmic corrections to Eq.~25!.
c1 and c2 are two positive constants depending onp(x) in
the following way:

c15
B

2E0

`

dx x2(51b)/2S 12
sinx

x D , ~26!

c25
1

24pS 1

x4D ,

where(•••)5*d3x(•••)p(x) is the average over the PD
p(x). Consequently, by using the results of Eqs.~22!–~26!,
we can distinguish three cases for what concerns
asymptotic behavior ofP(FW ).

~1! For b.0 the dominating part inA(kW ) at smallk is
exactly the same as in the homogeneous Poisson case
the same average densityn, i.e.,

A~kW !.12
4n

15
~2pk!3/2, ~27!

which implies P(FW ).
n

2
F29/2 @or equivalently W(F)

.2pnF25/2] at largeF with the same amplitude of the pur
Poisson case. In fact in this case, asb.0, the shot noise a
small distance from the particle in the origin, which we ha
seen to dominate the largeF limit in the statistically homo-
geneous Poisson point process, is purely Poissonian rec
ing only a negligible contribution fromp(x).

~2! For b50 we again have a scaling behavior typical
the isotropic Poisson case, but the coefficientC of P(FW ) is
larger, receiving a positive contribution from two-point co
relations, i.e., fromp(x):

A~kW !.128pnS ~2p!1/2

15
1

c1q

n~11q! D k3/2, ~28!

which implies againP(FW ).CF29/2 at largeF but with a
larger amplitudeC than in the isotropic Poisson case:

C5
n

2
1

qB

11q
. ~29!

In practice, from Eqs.~22!–~26!, we have the same scalin
behavior ofP(FW ) of the isotropic Poisson case but with
larger average densityn85n12qB/(11q). This is due to
the fact that the particle in the origin sees at small scale
spatial distribution locally identical to a Poisson one w
such an effective average density.

~3! For b,0 the smallk behavior ofA(kW ) is radically
changed from the isotropic Poisson case, as the second
in Eq. ~20! is dominant on CP(k). In particular from
Eqs.~19!, ~20!, and~25! we have that

a5
8pc1q

11q
,

0-5
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i.e.,

A~kW !.12
8pc1q

11q
k(31b)/2. ~30!

This means@see Eq.~23!# that 22a52(51b)/2. From this
relation we see that in this case the two integrals, resp
tively in Eq. ~24! and in the first of Eq.~26! coincide. This
implies that P(FW ).CF2(91b)/2 @or equivalently W(F)
.4pCF2(51b)/2] with

C5
q

11q
B. ~31!

This is due to the fact that at small scales the particle in
origin sees a strongly nonuniform, radially decreasing eff
tive density of particles.

In all cases the constantC can be calculated as a functio
of B andb by using Eqs.~30! and ~26!.

B. Small F expansion

The smallF behavior ofP(FW ) can be connected to th
largek behavior of its Fourier transform. First of all we no
that

lim
k→1`

4pI ~k;b!54pE
0

1`

dxx2p~x!51.

This simple observation implies@see Eq.~22!# that for any
GP point process, the asymptotically largek behavior of
A(kW ) is similar to that of the isotropic Poisson case with t
same average density, but with an amplitude reduced b
factor exp(22q/(11q). Consequently, the smallF behavior
of W(F) is the same of the homogeneous Poisson point p
cess but with an amplitude reduced by the same factor
@22q/(11q)#, i.e.,

W~F !.expS 2
2q

11qD 4

3p
F0

23F2, ~32!

whereF0 is given by Eq.~9!.

V. COMPARISON WITH SIMULATIONS

The validity of these theoretical results is well support
by the statistical analysis of numerical simulations of tw
different kinds of GP point processes with two explic
choices ofp(x) ~see Fig. 1!, for which the PDFW(F) of F is
directly measured

~1! In the first casep(x) is chosen to be simply a positiv
constant up to a fixed distancex0.0 and zero beyond this
distance:

p~x!5H 3

4px0
3

if 0 ,r<x0

0 if r .x0 ,

~33!
03111
c-

e
-

a

o-
xp

i.e., in reference to the preceding sectionB53/4px0
3 andb

50. That is the probability of attaching a daughter particle
a distance betweenx andx1dx from its parent is 3x2dx/x0

3

if x<x0 and zero forx.x0, while the direction ofxW is com-
pletely random. As shown above this choice ofp(x) should
give

W~F !.S 2pn1
3q

x0
3~11q!

D F25/2

at largeF, that is, with the same exponent but with a larg
amplitude than the pure isotropic Poisson case with the s
average densityn. At small F, as shown above, the
asymptotic behavior ofW(F) should be given by Eq.~32!.

~2! In the second casep(x) decays exponentially fast a
largex but it is singular asx22 at smallx, i.e.,

p~x!5
1

4px0

expS 2
x

r 0
D

x2
. ~34!

This choice ofp(x) should give

W~F !.
q

x0~11q!
F2(51b)/2

at largeF with b522. Again Eq.~32! should be valid at
small F.

The results of these simulations for the large and the sm
F scaling behaviors ofW(F) show a very good agreemen
~see Figs. 2 and 3! with the theoretical predictions given i
the preceding section for what concerns both exponents
amplitudes. Consequently, the approximation at the bas

FIG. 1. Connected two-point correlation functionh(x) mea-
sured in a single realization, with 1.53105 points in a cubic box of
volumeV51 for the two Gauss-Poisson point processes both w
q50.5 and where, respectively,~i! p(x) is the box function~box!
given by Eq.~33! with cutoff at x0.0.012 ~continuous line!, and
where ~ii ! p(x)5(1/4px0)exp(2x/x0)x

2 ~PL! with x050.012
~dashed line!. For comparison also the function 1/x2 is shown.
0-6
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these calculations can be considered valid to study the
point statistics of the gravitational field acting on the syst
particles.

VI. DISCUSSION

In this paper we have studied the gravitational force fl
tuations in the so-called GP particle distributions, which c
be considered as the class of most weakly correlated p
processes beyond the Poisson one. For this particle sy
we have seen how to generalize, through appropriate
proximations, the methods developed for the Poisson cas
order to find the PDF of the gravitational force acting
each particle. In the GP case, important deviations from
Poisson behavior are found both in the small and in the la
F limits. While in the former limit one has, with respect
the Poisson case, only a change of amplitude and a con
vation of the scaling exponent, in the latter limit even t
scaling exponent can be strongly modified. This can
caused mainly by the small scale behavior of CTPCF, wh
can introduce strong modification in the large force regi
when diverging at small distances. All these theoretical p
dictions are confirmed by direct results in numerical simu
tions in which both the scaling exponents of the force PDF
large and smallF and the amplitudes have been found
good agreement with the theoretical values obtained thro
the approximations used.

Before concluding, an important observation has to
made: as seen above in both Poisson and GP point proce
the contribution to the total gravitational force felt by a pa
ticle due to the other particles in its neighborhood is dom

FIG. 2. Comparison between the theoretical predictions~Box-
th-largeF and Box-th-smallF) given in the text and simulation
~Box! of the PDFW(F) of the modulus of the gravitational forc
for the GP case wherep(x) is a box function given by Eq.~33! with
q50.5 andx0.0.012, simulated with 1.53105 point particles in a
cubic volume of unit size. The theoretical behaviors at small a
large fields computed as explained in the text show a very g
agreement with simulations. For comparison the behavior of
Holtzmark PDF for a homogeneous Poisson particle distribu
~Poisson! with the same number density is also shown~point-
dashed line!.
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nating in determining the PDF of the force~in particular in
the large field limit!. This implies that the gravitational forc
fluctuates a lot spatially from particle to particle. Howev
this does not mean at all that the forces felt by two differe
particles are spatially uncorrelated. On the contrary it
simple to show that they arestronglycorrelated by analyzing
the statistical information encrypted in the Poisson equa
linking the gravitational field~i.e., force! EW (xW ) in the spatial
point xW to the stochastic matter densityn(xW ) in the same
point:

¹W •EW ~xW !52n~xW !. ~35!

By taking the ensemble average of the square modulus o
Fourier transform of both sides of Eq.~35! we obtain

^ukW•EW F~kW !u2&5^unF~kW !u2&, ~36!

whereEW F(kW ) andnF(kW ) are, respectively, the Fourier tran
forms of EW (xW ) andn(xW ). The right-hand side of Eq.~36! is
equal~for kÞ0 and apart from a normalization factor 1/V) to
the power spectrumS(kW ) of the density field which is the
Fourier transform of the CTPCFj(xW ). Since in a homoge-
neous Poisson point processj(xW ) is given by Eq.~1!, we
have thatS(kW ) is positive and constant at allkW . Therefore,
analyzing Eq.~36! for k→0, we can say that two-point cor
relations of the gravitational field decay in space at la
separationsx as 1/x, i.e., very slowly. In the GP class o
point processes the situation is analogous to the Pois
case, but the power spectrumS(kW ) receives a contribution
also from the nondiagonal parth(xW ) of j(xW ). Since in all GP

FIG. 3. As in the previous figure for the case wherep(x) is
given by Eq.~34! with q50.5 andx0.0.0055. The system ha
been simulated through 1.53106 particles in a cubic volume of uni
size~i.e., ten times the density in Figs. 1 and 2 but rescaling app
priatelyx0) in order to increase the statistics to make more clear
modifications with respect the Poisson particle distribution~Pois-
son! with the same number density. Asymptotic theoretical pred
tions for small and largeF are, respectively, indicated through PL
th-smallF and PL-th-largeF.
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point processesh(xW ) is integrable over all the space, wit
positive integral, we obtain again that field-field correlati
decays as 1/x, but with a larger amplitude with respect to
Poisson particle distribution with the same average den
This shared behavior of Poisson and GP point processe
due to the combination of two facts.

~1! For both casesj(xW ) has a finite and positive integra
over all the space.

~2! The fact that the contribution to the gravitational fie
~i.e., force! in a point due to all faraway particles varie
slowly in space, because of the long-range nature of the
ementary particle-particle gravitational interaction~i.e.,
;1/x2).

Finally we can say that the importance of this work
twofold. ~i! First, this is the first case of statistically hom
. J

tt.

03111
y.
is

l-

geneous correlated particle distribution in which a system
study of the gravitational force Chandrasekhar is done.~ii !
This study suggests some basic ingredients to be use
future attempts of extending the analysis to more comp
correlated particle distributions.
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